

Trespa Care and Maintenance

January 2000

TRESPA ATHLON FOR **LABORATORIES**

Due to their surface consisting specially formulated composite resins, Trespa panels not only possess outstanding mechanical characteristecs, but also have excellent resistance to most chemicals

Trespa can be used where technical -laboratory and chemicals

- solvents
- disinfectants
- dyestuffs
- bleaching agents
- cosmetics

are likely to attack the surface.

Trespa Athlon for Laboratories developed for these applications.

Chemical Resistance **Trespa Athlon Surface**

The following list, although not complete, gives a good idea of the resistance of Trespa to commonly used chemical substances (solid, diluted, fluid gaseous) at room temperature.

List 1

Trespa panels are fully impervious to the following substances. These substances will not change the surface of Trespa Athlon even after a longer period of time (ISO 4586, test period of 16 hours)

Acetone

Activate Charcoal Alcohols, Primary

Secondary Tertiary

Alcoholic Beverages

Aldehydes Alum Solution

Aluminium Sulphate

Amides

Amino Acetic Acid Amines, Primary

Secondary Tertiary

Amino Acetic Acid p-Amino Acetophenone

Ammonia

Ammonium Sulphate Ammonium Thiocyanate

Amyl Acetate Amyl Alcohol

Aniline **Animal Fats** Animal Feedstocks Arabinose Ascorbic Acid Asparagine Asparaginic Acid

Barium Chloride Barium Sulphate Benzaldehyde Benzidine Benzene Benzoic Acid Benzol Chloride Biogel Blood Blood Group Test Serum

Boric Acid

Butyl Acetate Butyl Alcohol

Cadmium Acetate Cadmium Sulphate Caffeine

Calcium Carbonate Calcium Chloride Calcium Hydroxide

Calcium Nitrate Cane Sugar Carbolic Acid Carbol Xylene

Carbon Carbon Tetrachloride

Casein Castor Oil Cedarwood Oil Cement

Chloral Hydrate Cholesterol Chlorobenzene Chloroform

Citric Acid Clay (Kaolin) Cocaine Coffee

Copper Sulphate Cosmetics

Cresolic Acid Cresol Cyclohexane Cyclohexanol

Detergents Dextrose Dichloroethylene Digitonin

Dimethylformamide Dimethyl Sulphoxide

Dioxane Dulcite

Esters Ethanol Ether Ethyl Acetate **Fats**

Formaldehyde

Formic Acid (up to 10% sol'n) Fructose

Galactose Gelatine Glucose Glycerine Glycol Glycocol Graphite Gypsum

Heparin Heptanol Hexane

Hexanol

Hydrogen Peroxide 3% Hydroquinone Hydrophysine

Immersion Oil

Ink Inosite Insecticide Inorganic Salts Iso-Propanol

Ketones

Lactic Acid Lactose Lead Acetate Lead Nitrate Levulose Lipstick

Lithium Carbonate

Magnesium Carbonate Magnesium Chloride Magnesium Sulphate

Maltose Mannite Mannose Mercury Mesoinosite Methol

Methylene Chloride

Milk Milk Sugar Mineral Oils Mineral Salts

Nail Polish Nail Polish Remover Naphthol Nickel Sulphate Nicotine

p-Nitro Phenol

Octanol Octvl Alcohol Ointments Oleic Acid Olive Oil Organic Solvents **Paints**

Pandys Reagent Panthenol

Paraffin Paraffin Oil Peptone

Petrol

Phenol & Derivatives Phenolphthalein

Polishing Creams/Waxes Potassium Aluminium Sulphate

Potassium Bromate Potassium Bromide Potassium Carbonate Potassium Chloride

Potassium Hexacyanoferrate Potassium Hydroxide Potassium lodate Potassium Nitrate

Potassium Sodium Tartrate Potassium Sulphate

Potato Starch Propanol Propylene Glycol Pyridine

Raffinose Rhamnose Rochelle Salt

Saccharose Salicyclic Acid Salicyclic Aldehyde

Saponin Soap

Soda Lye (up to 10%) Sodium Acetate Sodium Bicarbonate Sodium Bisulphate Sodium Carbonate Sodium Chloride

Sodium Citrate Sodium Di-ethyl Barbiturate

Sodium Hydroxide (< 10%) Sodium Hyposulphite Sodium Nitrate Sodium Phosphate Sodium Silicate Sodium Sulphate Sodium Sulphide Sodium Sulphite

Sodium Tartare Soil Soot Sorbitol

Standard Acetate Solvents Standard Nutrient I - Agar Standard Nutrient II - Agar Standard Nutrient I - Bouillon

Standard Nutrient II - Bouillon

Starch

Starch Common Salt Solution

Stearic Acid Styrene

Sugar & Derivatives

Sulphur

Talcum
Tannin
Tartaric Acid
Tea
Tetrahydrofurane
Tetraline
Thio-Urea
Thymol
Thymol Buffer Solution
Toluene
Trehalose
Trichloroethylene
Trypsin
Tryphtophan
Turpentine

Urea Urease Uric Acid Urine

Vanillin Vaseline Vinegar

Water Water soluble Colours

Xylene

Yeast

List 2

Trespa sheets have a limited resistance to the following chemicals especially in diluted or fluid form. This means that, if these chemicals are spitt on the surface they should be removed within 10 to 15 minutes with a wet cloth and the surface subsequently wiped dry.

Note: A limited number of colours are sensitive to acids due to the chemical composition of the pigments (e.g. chromate dyes) In case of doubt, please contact the manufacturer for advice with regard to colour selection.

Alumium Chloride Amino Sulphonic Acid* Aniline Dyes Arsenic Acid*

Crystal Violet

Esbach's Reagent

Ferric Chloride Formic Acid* Ferrous Chloride Solution Fuchsin Solution

Hair Bleaching Agents Hair Colouring Agents Hydrochloric Acid* Hydrogen Peroxide

lodine Solution Inorganic Acids*

Mercury Chloride Solution Mercury Dichromate Methylene Blue Millons Reagent

Nitric Acid*

Oxalic Acid

Picric Acid
Phosphoric Acid*
Potassium Bisulphate
Potassium Chromate
Potassium Dichromate
Potassium Hydroxide*
Potassium lodide
Potassium Permanganate

Silver Nitrate
Sodium Bisulphate
Sodium Hydroxide
Sodium Hypochloride
Sodium Thiosulphate
Sulphuric Acid*
Sulphurous Acid*

* in concentrations up to 10%

List 3

The agressive gasses and vapours mentioned in this list cause changes in the Trespa surface, and must therefore be removed immediately.

Acetic Acid (Glacial) Arsenic Acid* Phosphoric Acid*

Aqua Regia*
Hydrochloric Acid *
Nitric Acid*
Perchloric Acid*
Amino Sulphonic Acid*
Chrome-Sulphuric Acid*
Hydrogen Bromide
Sulphuric Acid*

*All the above in concentrations greater than 10%.

List 4

The following aggressive gases and vapours inevitably damage the surface of Trespa.

Acid Fumes Nitrous Fumes

Bromine Sulphur Dioxide

Chlorine

Hydroflouric Acid

Cleaning and Disinfection

Trespa panels can be cleaned easily and need no special care. Superficial pollution can be removed with a damp cloth and soap or any household cleaner. The latter should not contain strong alkaline components abrasives. or Panels defiled with persistent substances such as glue or paint residues, ink or lipstick can be cleaned with an organic solvent such as methylated spirit, acetone, carbon

trichloride or benzene.

Nitro-cellulose thinner should not be used since it causes shading. Mortar and cement residues can be removed with ACMOSOL cleaner. Wax and similar substances should be removed by carefully scraping.

When silicon mastics are being used, extra care should be taken. Because of their chemical inertness, silicones cannot be disolved in organity solvents. Therefore it is usually impossible to remove residues other than by mechanically cleaning the surface.

Disinfection

In hospitals and clinics, disinfection is an important item: surgeries, operating theatres, beds, cabinets all have to be disinfected thoroughly and regularly.

Trespa panels can be easily cleaned and disinfected. In the case of internal linings, the number of joints is considerably reduced due to large sheet sizes. Furthermore, the edges need no special treatment due to the superb high density core with its homogenous composition.

The surface and edges of Trespa have been tested with a large number of disinfectants which were left on the panels for four weeks. In addition, the extent to which the panels support growth of microorganisms was assesed in comparison to other materials.

Trespa Athlon is impervious to disinfectants based on alcohols, aldehydes, phenols and quartenair ammonia compounds.

Note: Test reports and a complete list of approved disinfectants may be obtained from Trespa UK Ltd.

Resistance to scratching and surface wear

For applications under extreme conditions where the surface of Trespa will be subject to heavy mechanical attack, it is well advised to choose colours and surface structures with care. In this way, an optimal scratch and wear resistance can be achieved. The Futuriq range of speckled patterns are strongly recommended for these applications.

Such applications include:
-work tops in production areas
-sports and leisure centres

Vandalism

Trespa has proved to be suitable in applications where vandalism is prevalent, whether it occurs in the form of mechanical attack or graffiti with aerosols or pen markers.

Vandalism with paint or ink can be removed easily from the surface of Trespa by means of organic solvents. Due to its composition, Trespa is completely impervious to organic solvents.

General fire characteristics.

Due to its excellent fire characteristics, Trespa is a safe material for use in the interior and exterior of buildings as well as in ships and coachworks.

Trespa does not drip or melt and releases little smoke whilst the combustion gases are nontoxic.

Trespa does not contain chlorine or other halogens and therefore does not contribute to the corrosion of construction and installation components due to fire.

Fire Classification

Trespa FR is rated "Class O". Test reports were issued by Yarsley in accordance with the relevant standards and regulations.

In accordance with the 1985 Building Regulations, a building material is designated "Class O" if:

- it is composed throughout of materials of limited combustibility, or
- it is combustible but has a class 1 surface spread of flame when tested in accordance to BS476: part 7 and a fire propagation index (I) of not more than 12 and a sub-index (i) of not more than 6 when tested in accordance with BS 476: part 6.

Trespa Athlon benchtop material will retain all its characteristics in temperatures ranging from -40 to +180°C. It has 30 minutes burn through when tested in accordance with BS476: part 8.

For further information, please contact:

Trespa UK Ltd Grosvenor House Central Park Telford TF2 9TW Tel: 01952 290707 Fax: 01952 290101